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This is a hot area
There have been fourteen Abel prize winners since Jean 
Paul Serre won the prize for just about everything 
(including geometric group theory), and since then …
… for their work in geometric group theory and allied areas:

Jacques Tits (2008)                           Mikhail Gromov (2009)
IUCr 2014 MathCryst Commission 2



A (Very) Brief Introduction to 
Geometric Group Theory

Geometric Group Theory uses the algebraic machinery of 
geometry and topology to understand groups.
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A (Very) Brief Introduction to 
Geometric Group Theory

Geometric Group Theory uses the algebraic machinery of 
geometry and topology to understand groups.

Crystallographers may not be so interested in groups in 
themselves, but they are interested in geometric and 
topological objects that represent crystal structures.

We can turn the agenda of geometric group theory on its 
head to work on representations of crystal structures.
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A (Very) Brief Introduction to 
Geometric Group Theory

Today…
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A (Very) Brief Introduction to 
Geometric Group Theory

Today…
• Graphs were the original (combinatorial!) representations 

in the theory.  But “digraphs” are more readily used…
• Using a group to navigate a graph.
• What might this be good for?
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About Graphs
If you believe in bonds between atoms 

– at least as a useful metaphor –
– or if you are making a polymer out of molecular 

building blocks –
then you can represent nano-structures with graphs.
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Graphs
A combinatorist would say that a graph is an ordered pair 
(V, E) where V is a set of vertices and E is a set of edges.  
Usually there is at most one edge for each pair of vertices.
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Graphs
A combinatorist would say that a graph is an ordered pair 
(V, E) where V is a set of vertices and E is a set of edges.  
Usually there is at most one edge for each pair of vertices.

(A topologist would have a quite different definition.  Let’s 
not go into that right now.)
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Graphs

This graph has nine 
vertices

V = {a, b, c, d, e, f, g, h, i}
and nine edges

E = {{a, b}, {b, c}, {c, d}, 
{d, e}, {b, g}, {g, f}, 
{g, h}, {h, d}, {h, i}}.
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Graphs
An automorphism on a graph is a one-to-one function 
sending vertices to vertices and edges to edges so that 
edge-vertex incidence is preserved.
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Graphs

This graph has two 
automorphisms:
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Graphs

This graph has two 
automorphisms:
• The identity, that sends 

each vertex to itself 
and each edge to 
itself, and
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Graphs

This graph has two 
automorphisms:
• The identity, that sends 

each vertex to itself 
and each edge to 
itself, and

• The “reflection” at left, 
switching vertices 
along red arrows.
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Digraphs
It is not controversial to say that a directed graph or digraph is 
a pair (N, A), where N is a set of nodes and A is a set of arcs, 
each of which points from a source vertex to a target.
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Digraphs
It is not controversial to say that a directed graph or digraph is 
a pair (N, A), where N is a set of nodes and A is a set of arcs, 
each of which points from a source vertex to a target.
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Notice in (a, b), a is the source and b 
the target, but in (b, a), it’s the other 
way around.



Digraphs

This digraph has six 
nodes

N = {a, b, c, d, e, f},
and six arcs

A = {(a, b), (b, c), (c, d),
(d, e), (e, f), (f, a)}.
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Digraphs
An automorphism of a digraph sends nodes to nodes and 
arcs to arcs, preserving node-arc incidence.
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Digraphs

This digraph has six 
automorphisms:

The identity and then 
counterclockwise 
rotations by 60°, 120°, 
180°, 240°, and 300°.
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Digraphs

Reflection across the 
vertical line is not an 
automorphism as that 
would reverse arrows.
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Digraphs
Combinatorial group theory typically works with digraphs, 
not graphs.  But that may suit our purpose: in many 
molecules and crystal structures, there are bonds or linkers 
connecting two atoms or MBBs that are not from the same 
orbit – or at least, cannot be switched by any symmetry of 
the structure.
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Digraphs
Given a graph representing a crystal structure, we can 
represent that structure with a digraph, where each 
“symmetric” edge (viz., an edge whose vertices are 
switched by an automorphism) is represented by a pair of 
arcs, while each “asymmetric” edge is represented by a 
single arc.
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Graphs and Groups
For any graph Γ, the set of automorphisms of Γ form a 
group under composition +.  Let’s not go into groups now, 
but there are two things you should know about groups 
before we go on:
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Graphs and Groups

1. In 1939, Robert Frucht proved that every finite group 
was equivalent to the automorphism group of some finite 
graph.
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Graphs and Groups

1. In 1939, Robert Frucht proved that every finite group 
was equivalent to the automorphism group of some finite 
graph.

This meant that graphs (and digraphs) could be used to 
“represent” groups – which was helpful because groups are 
abstract and strange beasts.
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Graphs and Groups

2. In 1882, Walther von Dyck observed that sequences of 
actions – like recipes or itineraries – could be represented 
by elements of a group.
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Graphs and Groups

2. In 1882, Walther von Dyck observed that sequences of 
actions – like recipes or itineraries – could be represented 
by elements of a group.

Dyck’s observation helped launch “combinatorial group 
theory”, of which geometric group theory is a 
generalization.
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Navigation
One of the popular descriptive mechanisms in 

mathematics is to describe a structure by describing all 
the components of the structure.
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Navigation
One of the popular descriptive mechanisms in 

mathematics is to describe a structure by describing all 
the components of the structure.

Another is to describe a structure by describing how it 
can be traversed.

These two mechanisms can be fused together …
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Navigation
Suppose that you wanted to tour a foreign country by train.  
You had an itinerary that told you that on the first leg of 
your journey, you take the blue train.  Then at the station, 
you take the red train.  Then you take the blue train again.  
After these three hops, you are at your destination.
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Navigation
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Suppose that you are at the 
ringed starting point and you 
wanted to take three steps 
counterclockwise around the 
benzene ring. 



Navigation
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von Dyck says that each 
possible step involves reflecting 
across one of the three mirrors 
adjacent to the START node.



Navigation
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von Dyck says that each 
possible step involves reflecting 
across one of the three mirrors 
adjacent to the START node.

To start counterclockwise, reflect
across the blue mirror.



Navigation

IUCr 2014 MathCryst Commission 38

Since we reached the next 
node by reflecting across the 
blue mirror, label that node with 
a “b”.



Navigation
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Since we reached the next 
node by reflecting across the 
blue mirror, label that node with 
a “b”.

Notice that I reflected the yellow
and red mirrors across the blue
mirror…



Navigation

IUCr 2014 MathCryst Commission 40

Since we reached the next 
node by reflecting across the 
blue mirror, label that node with 
a “b”.

Notice that I reflected the yellow
and red mirrors across the blue
mirror…



Navigation
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Since we reached the next 
node by reflecting across the 
blue mirror, label that node with 
a “b”.

Notice that I reflected the yellow
and red mirrors across the blue
mirror…



Navigation
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We now face three mirrors.
These are the reflections of the 
original three mirrors, across the 
blue mirror.



Navigation
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We now face three mirrors.
These are the reflections of the 
original three mirrors, across the 
blue mirror.

Going counterclockwise, our
next step is to reflect across the 
red mirror.



Navigation
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Again, we label the next node 
with a “br” as we were at node 
“b” and we reflected across the 
red mirror to get to “br”.



Navigation
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Again, we label the next node 
with a “br” as we were at node 
“b” and we reflected across the 
red mirror to get to “br”.

Again, we reflect the mirrors, 
this time across the red mirror.



Navigation
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Moving counterclockwise, we 
reflect across the blue mirror …



Navigation
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… to get to the node we label 
“brb” as we traversed a blue 
mirror, a red, and then a blue 
to get there.



Navigation
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… to get to the node we label 
“brb” as we traversed a blue 
mirror, a red, and then a blue 
to get there.

If we had gone clockwise, we 
would have reached that same 
node, labeling it “rbr”.



Where do 
Crystallographers go from 

Here?
This approach appears productive in crystal structure 

prediction, and may have applications in structure 
analysis...
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Where do 
Crystallographers go from 

Here?
This apparatus is already being used for crystal prediction, 
but in a non-mainstream way.
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Where do 
Crystallographers go from 

Here?
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computational chemistry (actually, physics).
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Where do 
Crystallographers go from 

Here?
This apparatus is already being used for crystal prediction, 
but in a non-mainstream way.
• Contemporary crystal prediction tends to be specific to 

the  materials being used.  This makes it an exercise in 
computational chemistry (actually, physics).

• This apparatus is inherently geometric, and will show 
what can or cannot be done, regardless of the physics.
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Where do 
Crystallographers go from 

Here?
I know of two programs that rely on this approach.
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Where do 
Crystallographers go from 

Here?
I know of two programs that rely on this approach.
1. The Symmetry-Constrained Intersite Bonding 

Search (SCIBS) developed by Michael Treacy, Igor 
Rivin et al, uses von Dyck’s reflection technique.
SCIBS has generated several million “zeolitic” graphs, 
posted at the Hypothetical Zeolites database.
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Where do 
Crystallographers go from 

Here?
I know of two programs that rely on this approach.
1. The Symmetry-Constrained Intersite Bonding 

Search (SCIBS) developed by Michael Treacy, Igor 
Rivin et al, uses von Dyck’s reflection technique.
SCIBS has generated several million “zeolitic” graphs, 
posted at the Hypothetical Zeolites database.

2. The Crystal Turtlebug, developed by Edwin Clark 
and Greg McColm, is still under development. It has 
generated several hundred novel crystal nets, none of 
which has been synthesized (yet).
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Where do 
Crystallographers go from 

Here?
Both generate crystals somewhat as follows …
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Where do 
Crystallographers go from 

Here?
Both generate crystals somewhat as follows …

Start at the beginning:
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Where do 
Crystallographers go from 

Here?
Both generate crystals somewhat as follows …

Add a vertex:
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Where do 
Crystallographers go from 

Here?
Both generate crystals somewhat as follows …

And another:
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Where do 
Crystallographers go from 

Here?
Both generate crystals somewhat as follows …

And keep on going:
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Where do 
Crystallographers go from 

Here?
But is this all science fiction?
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Where do 
Crystallographers go from 

Here?
In 1980, according to legend, an Escher print inspired Ned 
Seeman to try to synthesize a structure of DNA.
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Where do 
Crystallographers go from 

Here?
Making a cube took a decade …
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Where do 
Crystallographers go from 

Here?
DNA is highly controllable, and that’s what inspired 
computer scientist Len Adleman to talk about …

“DNA computation”
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Where do 
Crystallographers go from 

Here?
The dream was to make a desktop DNA computer that 
outperformed ordinary computers.  Very quickly, this 
became a campaign to compute NP-complete queries …

(Stephen Cook, Mr. NP-completeness.)
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Where do 
Crystallographers go from 

Here?
But a DNA computation of an NP-complete query meant 
constructing graphs out of DNA: the graphs generated 
would be the solution to the problem…

(Ron Fagin: NP and graphs…)
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Where do 
Crystallographers go from 

Here?
During the 1990s, a lot of graph-theoretic architecture was 
developed by a number of mathematicians, many of which 
visited Ned Seeman’s lab and kibbitzed.

(USF’s Natasa Jonoska, who kibbitzed)
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Where do 
Crystallographers go from 

Here?
During the 2000s, there appeared new design techniques 
for DNA origami and other DNA structures.
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Where do 
Crystallographers go from 

Here?
There’s no sign of DNA computers, but there is a LOT of 
DNA construction…
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Where do 
Crystallographers go from 

Here?
DNA is extremely “tunable”, as Metal Organic Framework 
people would put it.
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Where do 
Crystallographers go from 

Here?
DNA is extremely “tunable”, as Metal Organic Framework 
people would put it.

Metal ions and organic ligands are not as tunable, but we 
have had enough success with them to suggest that the 
next step is designing metal organic materials – and 
then synthesizing them.
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Where do 
Crystallographers go from 

Here?
DNA is extremely “tunable”, as Metal Organic Framework 
people would put it.

Metal ions and organic ligands are not as tunable, but we 
have had enough success with them to suggest that the 
next step is designing metal organic materials – and 
then synthesizing them.

And that will include developing new design principles.
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Thank you
Places to go …
• M. Behzad, G. Chartrand & L. Lesniak-Foster, Graphs & 

Digraphs.  Graduate but still accessible introduction to many of 
the issues.

• I. Herstein, Topics in Algebra.  The grand old undergraduate 
text in the subject.

• K. Hoffman & R. Kunze, Linear Algebra.  The monster book 
with all the toys.

• J. Meier’s Graphs, Groups and Trees.  Probably the most 
accessible of the geometric group theory books.

• P. Yale, Geometry and Symmetry.  The  most accessible book 
I’ve found that connects the group theory and the geometry.

(All these are at the math major senior / 1st year grad level.)
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